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Abstract. Imperfect competition exists in the current economic climate. It can manifest in 

relation with product quantity (Cournot type), product price (Bertrand type) or quality. The 

purpose of this paper is to analyze a duopoly market where a Bertrand behavior is adopted by 

the firms. Regardless the level of product differentiation, both firms are expected to survive 

and a stable equilibrium will manifest. In a non differentiation scenario (homogeneous goods), 

with identical quantities being sold, the selling price will match the marginal cost and duopoly 

profit will be zero, situation known as Bertrand's Paradox. 
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1. Introduction 

The theory of oligopoly has a long and distinguished history. Dating back two centuries ago 

the first studies identify a phased evolution of the oligopoly theory with an initial traditional 

stage, where monopoly/competitive behaviors were analyzed, followed by a later stage where 

games theory was applied to better understand the oligopoly behaviors (John von Neumann 

and Oskar Morgenstern - (1944)) while various oligopoly models were developed to mirror 

real market conditions (see Joe Bain (1956), Paolo Sylos Labini (1957) works and Franco 

Modigliani’s papers (1958)). 

Representing the traditional stage, Augustine Cournot and Joseph Louis Francois Bertrand’s 

models stand out (with the two scientist being later named by Xavier Vives "founding fathers 

of oligopoly theory" (2001)). Cournot presents a duopoly market, with firms producing 

homogeneous goods and competing in quantities, while Bertrand was advocating price 

competition. Initially written as a review of Cournot's theory, Bertrand's approach (1883) 

proved to be the most used model in price competition scenarios. His base assumptions were: 

existence of at least two competing firms producing homogeneous goods, equal awareness  of  

market demand, price competition scenario, simultaneous price set up with consumers 

choosing to buy from the firm offering lowest price, or equally from each firm, in case of 

matching  price. 

Current oligopoly literature contain numerous studies based on Bertrand model. Using Dixit’s 

general principles (1979), Singh & Vives (1984) highlight quantity competition (substitute 

goods) and price competition (complementary goods) as the dominant strategies. Using a 

different approach, Hackner (2000), Zanchettin (2006) and Tremblay (2011) consider that 

informational asymmetry (including demand’s asymmetry) can trigger optimality of  Bertrand 

or Cournot-Bertrand models. Regardless the approach demand and cost function linearity were 

the common link of the majority of the studies (Ahmed et all (2006), Zhang et all (2009), 
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Tremblay (2011)) with demand non-linearity being analyzed by Ahmed, Alsadany & Puu 

(2015) and Yi & Zeng (2015)  developing a model using cost function non-linearity. 

Another important step in the oligopoly theory development is the so-called Cournot-Bertrand 

duality theory, first noted by Sonnenschein (1968) offering the dual perspective of  the 

Cournot/Bertrand competition (substitute goods) respectively the Bertrand/Cournot 

competition (complementary goods) as having the same strategic properties (Singh & Vives, 

1984).  Studying one model should be enough, as the other one will follow similar principles. 

The next paragraphs of this paper will investigate the impact of product differentiation on 

Bertrand static equilibrium model highlighting aspects such as the firm stability and survival 

potential as well as the product differentiation impact on Nash equilibrium theory. The 

principals of the related mathematic model are presented next. 

 

2. The model 

The scenario used is one with high consumers number but only two producers of differentiated 

goods; analyzed below is the potential market equilibrium with consumers targeting to 

maximize their own satisfaction seen as the difference between own utility function and price 

for purchasing required quantities of products, without any budgetary constraints: 

𝑆 = 𝑈(𝑞1, 𝑞2) − ∑𝑝𝑖

2

𝑖=1

𝑞𝑖     (1) 

 

Mathematically, the utility function is considered to be non-linear (quadratic), with separable 

variables and also strictly concave, as per bellow: 

 

𝑈(𝑞1, 𝑞2) = 𝛼1𝑞1 + 𝛼2𝑞2 −
𝛽1𝑞1

2 + 2𝑑𝑞1𝑞2 + 𝛽2𝑞2
2

2
  

 

where 𝛼𝑖 > 0, 𝛽𝑖 > 0,  𝑑𝜖[0; 1], 𝛽1𝛽2 − 𝑑
2 > 0, 𝛼𝑖𝛽𝑗 −  𝛼𝑗𝑑 > 0 (∀)  𝑖 = 1,2̅̅ ̅̅   

 

Using  α1 = α2 = a, β1 = β2 = 1 as assumptions, the utility function becomes: 

 

𝑈(𝑞1, 𝑞2) = 𝑎(𝑞1 + 𝑞2) −
𝑞1
2 + 2𝑑𝑞1𝑞2 + 𝑞2

2

2
  (2) 

 

This is expected to determine a linear demand functions which inverse is: 

 

𝑝1 = 𝑎 − 𝑞1 − 𝑑𝑞2   →    𝑞1 =
a(1 − 𝑑)

1 − 𝑑2
−

1

1 − 𝑑2
∗ 𝑝1 +

𝑑

1 − 𝑑2
∗ 𝑝2 

𝑝2 = 𝑎 − 𝑞2 − 𝑑𝑞1   →   𝑞2 =
a(1 − 𝑑)

1 − 𝑑2
−

1

1 − 𝑑2
∗ 𝑝2 +

𝑑

1 − 𝑑2
∗ 𝑝1 

 
a system similar to those already used by  Dixit (1979), Singh & Vives (1984), Imperato et all  

(2004), Tremblay (2011), under positivity restriction, where “d”indicates the nature of the 

goods: positive values for substitutes goods, negatives values for complements, while zero 

values representing independent goods. Demand function for “i” good, decreases in its price, 

but increases/decreases in rival’s price if case of substitute goods/ complements. 

It can be noted that d≠1 at this stage.  
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As regards the production cost, this is considered identical for both firms and expressed by a 

linear function (C = c * q) matching the marginal cost. Based on these assumptions, the profit 

can be expressed as per below: 

𝜋𝑖 = (𝑝𝑖 − 𝑐)𝑞𝑖 , (∀)𝑖 = 1,2̅̅ ̅̅  
 

Marginal profits as well as all Appendix A calculations, leads to Nash equilibrium values:   

 

𝑝1
∗ = 𝑝2

∗ =
𝑎(1−𝑑)+𝑐

2−𝑑
 (3)        𝑞1

∗ = 𝑞2
∗ =

𝑎−𝑐

(1+𝑑)(2−𝑑)
 (4)          𝜋1

∗ = 𝜋2
∗ =

(𝑎−𝑐)2(1−𝑑)

(2−𝑑)2(1+𝑑)
   (5) 

    

The results obtained so far lead to the following initial conclusions: 

   - If d = 0 the model confirms that both players act as monopolists; 

   - Both firms have the same Nash equilibrium behavior (values); 

   - If “d” increases up to 1, equilibrium becomes more competitive - price and profit decreases. 

 

To further analyze the stability of the Nash equilibrium we need to start with the necessary and 

sufficient stability condition (Dixit, 1986): |𝜋𝑖𝑖| > |𝜋𝑖𝑗| , 𝑤ℎ𝑒𝑟𝑒 𝜋𝑖𝑖 =
𝜕2𝜋𝑖

𝜕𝑝𝑖
2  𝑖𝑎𝑟 𝜋𝑖𝑗 =

𝜕2𝜋𝑖

𝜕𝑝𝑗
2  ,

𝑖, 𝑗 = 1,2̅̅ ̅̅    
 

{
 
 

 
 
𝜕2𝜋1

𝜕𝑝1
2 >

𝜕2𝜋1
𝜕𝑝1𝑝2

𝜕2𝜋2

𝜕𝑝2
2 >

𝜕2𝜋2
𝜕𝑝2𝑝1

   →   |
−2

1 − 𝑑2
| > |

𝑑

1 − 𝑑2
 | →  

1

1 − 𝑑2
>

𝑑

2(1 − 𝑑2)

𝑑𝜖(0;1)
⇒    2 > 𝑑 (𝐴).  

 

Conclusion: equilibrium is stable (∀) 𝑑 ∈ (0; 1).        
Next paragraphs will analise the d = 1 scenario - perfectly substitutes goods. Therefore we 

have  
𝜕𝑈

𝜕𝑞i
= a − 𝑞i − 𝑞j = 𝑝𝑖, (∀)𝑖, 𝑗 = 1,2̅̅ ̅̅  , then pi = pj = p and further 𝑞𝑖 + 𝑞𝑗 = 𝑎 − 𝑝. 

Consumers will choose to buy at the best price, however price being identical and no 

individual preferences, market demand will be perfectly split between the two producers. 

Thus 𝑞𝑖 = 𝑞𝑗 =
𝑎−𝑝

2
  (6), profit becomes 𝜋𝑖 = (𝑝 − 𝑐)𝑞𝑖 = (𝑝 − 𝑐)

𝑎−𝑝

2
= 

𝑎𝑝−𝑝2−𝑎𝑐+𝑐𝑝

2
  . 

First order condition leads to: 

 

𝑝 =
𝑎 + 𝑐

2
  (7)    →    𝑞𝑖 = 𝑞𝑗 =

𝑎 − 𝑐

2
= 𝑞  (8)     →    𝜋𝑖 = 𝜋𝑗 =

(𝑎 − 𝑐)2

4
 = 𝜋 (9) 

 
Comparing (6) and (8) above is obvious that 𝑝 = c, resulting 𝜋 = 0. 

Nash equilibrium is profit maximizer for the player i, regardless player j behavior, conclusion 

mathematically expressed as per fellow: 

 

{
𝜋𝑖(𝑝𝑖

∗, 𝑝𝑗
∗) ≥ 𝜋𝑖(𝑝𝑖, 𝑝𝑗

∗) (∀) 𝑖, 𝑗 = 1,2̅̅ ̅̅

𝜋𝑗(𝑝𝑖
∗, 𝑝𝑗

∗) ≥ 𝜋𝑗(𝑝𝑖, 𝑝𝑗) (∀) 𝑖, 𝑗 = 1,2̅̅ ̅̅
    

 
Proposition: 𝑝1 = 𝑝2 = 𝑐 and 𝜋1∗ = 𝜋2∗ =0 defines the only Nash equilibrium. 
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Proof: as already mentioned above, demand for the "i" product depends on the price set up by 

the rival firm (Machado, Economia Industrial) and is expressed as follows: 

       

 
Figure 1. Firm’s “i” demand function and its dependence of rival’s price 

 

 In any duopoly scenario, we may have one of the following situations: 

a) P1
* > P2

* > c . Thus 𝐷(𝑝1) = 0 → 𝜋1 = 0 , 𝐷(𝑝2) = 𝐷(𝑝2
∗) →  𝜋2 = (𝑝2

∗ − 𝑐)𝐷(𝑝2) > 0 

First player optimal response would have been P1
’ =P2

*-ε , generating positive profit. 

b) P1
* = P2

* > c. In this case  𝜋1
∗ = (𝑝1

∗ − 𝑐)
𝐷(𝑝1)

2
 , 𝜋2

∗ = (𝑝2
∗ − 𝑐)

𝐷(𝑝2)

2
 

      First player optimal response would have been P1
’ =P2

*-ε which would lead to the seizure 

of the entire demand, so 𝐷(𝑝1) = 𝐷(𝑝1
′) therefore 𝜋1

′ = (𝑝1
′ − 𝑐)𝐷(𝑝1

′ ) > (𝑝1
∗ − 𝑐)

𝐷(𝑝1)

2
= 𝜋1

∗ 

c)  P1
* > P2

* = c. Then 𝐷(𝑝1) =  0 → 𝜋1 = 0, 𝐷(𝑝2) = 𝐷(𝑝2
∗) →  𝜋2 = (𝑐 − 𝑐)𝐷(𝑝2) = 0 

Second player optimal response would be P2
’ =P1

*-ε and 𝜋2
′ = (𝑝2

′ − 𝑐)𝐷(𝑝2
′ ) > 0 = 𝜋2

∗ 

d) P1
* = P2

* = c. Then 𝐷(𝑝1) = 𝐷(𝑝2) =
𝐷(𝑝1,𝑝2)

2
  →  𝜋1 = 𝜋2 = (𝑐 − 𝑐)

𝐷(𝑝1,𝑝2)

2
 = 0 

If P1 ⸔   𝜋1 = (𝑝1
∗ − 𝜀 − 𝑐)𝐷(𝑝1 − 𝜀) < 0 = 𝜋1

∗ and if P1 ⸕  P1
 > P2  𝐷(𝑝1) =  0 = 𝜋1

∗. 

Any action path the first player would take, would lead to a smaller profit then the one expected 

from the current strategy, therefore he is not motivated to modify its price triggering the unique 

Nash equilibrium point. 

Conclusion: in case of homogeneous goods (perfectly substitutable), equilibrium is stable, 

with the price being equal to marginal cost, at which both producers offer half of the existing 

market output whilst individual and aggregate profit is zero – scenario known in specialized 

literature as the Bertrand Paradox. 

Optimal response of player "i" to player "j" actions, is described by the reaction function: 

 

𝑅𝑖(𝑝𝑗) = {

𝑝𝑀; 𝑝𝑗 < 𝑝𝑀 

𝑝𝑗 − 𝜀; 𝑐 < 𝑝𝑗 ≤ 𝑝𝑀
𝑐;    𝑝𝑗 ≤ 𝑐

 

 

We further graphically analyze the sensitivity of the price/quantity/profit to the changes in the 

level of product differentiation (values of parameter d) in a Nash equilibrium scenario. Using 

the formulas in Appendix B as starting point and customizing parameters a and c ( a = 80 EUR,  
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c = 30 EUR) we  have gradually increased product homogeneity degree by ratio of 0.05 (from 

the independent goods specific value (d = 0) to homogeneous goods specific value one (d = 1)) 

 
Figure 2. Nash equilibrium price evolution                  Figure 3. Nash equilibrium quantity evolution 

 

 
                                              Figure 4. Nash equilibrium profit evolution 

 

3. Conclusions  
In independent goods case (d = 0), the coefficients of a and c are equals (0.5 each), following 

opposite trendlines as the degree of products differentiation decreases, however their sum 

remains unitary, as  
1−𝑑

2−𝑑
+

1

1−𝑑
= 1. As a>c, we are witnessing the gradual decrease of the price, 

from a and c average value of 55 EUR, down to marginal cost level of 30 EUR;  

As for the quantity triggering the equilibrium scenario total coefficients distribution symmetry 

can be noted in between 0 to 1 interval. Variations are not high, oscillating between 0.5 

(maximum - tangible in interval corners) and 0, (4). The explanation is also mathematical 

(Appendix C), due to the fact that for  𝑞∗′ = −
(𝑎−𝑐)(1−2𝑑)

(1+𝑑)2(2−𝑑)2
  the unique critical point (minimum 

point also) is d=0.5, with the function showing a decreasing trendline before and and increasing 

trendline after. It can be noted that the quantity equilibrium level is gradually decreasing from 

the initial 25 items  equilibrium value while bouncing back in homogenous goods scenario. 

Profit for equilibrium scenario has a downward trend, starting from 0.25 (a-c)2 down to zero 

value for homogeneous goods (so-called Bertrand paradox). Math principles are one more time 

to be noted as 𝜋∗′ = −
2(𝑎−𝑐)2(𝑑2−𝑑+1)

(1+𝑑)2(2−𝑑)3
 , strictly negative expression (Appendix D) therefore a 

decreasing function. Moreover the graph shows a decreasing profit trend from 625 EUR to the 

breakeven point (zero profit). 

 

 

 

0

10

20

30

40

50

60

0 0.5 1 1.5

N
as

h
 e

q
u

ili
b

ri
u

m
 p

ri
ce

Product differentiation degree

22

22.5

23

23.5

24

24.5

25

25.5

0 0.5 1 1.5N
as

h
 e

q
u

ili
b

ri
u

m
 q

u
an

ti
ty

Product differentiation degree

0

100

200

300

400

500

600

700

0 0.5 1 1.5

N
as

h
 e

q
u

ili
b

ri
u

m
 p

ro
fi

t

Product differentiation degree



Proceedings of the IE 2019 International Conference 

www.conferenceie.ase.ro 

 

 

 

 
478 

 

  

References 

[1] J. Von Neumann, O. Morgenstern, Theory of games and economic behavior, Princeton 

University Press, 1944.      

[2] J.S. Bain, “Barriers to New Competition, their character and consequences in 

Manufacturing”, Harvard University Press (1956)      

[3] P. Sylos-Labini, Oligopolio e progresso tecnico. Milano, Giuffre' 1957, pp. 207, L. 1000 

[4] F. Modigliani, ”New developments on the oligopoly front”, Journal of political Economy, 

Vol. 66 (1958), pp. 215–232  

[5] X. Vives, Oligopoly Pricing: Old Ideas and New Tools. MIT Press, Cambridge, 2001  

[6] J. Bertrand, Review of Théorie Mathématique de la Richesse Sociale and Recherches sur 

les Principles Mathématique de la Théorie des Richesses. Journal des Savants (1883), pp. 

499–508.  

[7] A. Dixit, ”A model of duopoly suggesting a theory of entry barriers”. Bell Journal of 

Economics, Vol. 10 (1979), pp. 20–32.    

[8] N. Singh, and X. Vives, “Price and Quantity Competition in a Differentiated Duopoly,” 

Rand Journal of Economics, Vol. 15, No. 4, 1984, pp. 546-554.  

[9] J. Häckner, ”A note on price and quantity competition in differentiated Oligopolies”, 

Journal of Economic Theory, Vol 93 (2000), pp. 233–239. 

[10] P. Zanchettin, ”Differentiated duopoly with asymmetric costs”, Journal of Economic 

Management Strategy, Vol 15 (2006), pp. 999–1015. 

[11] C.H. Tremblay, M.J. Tremblay, V.J. Tremblay, ”A general Cournot–Bertrand model with 

homogenous goods”, Theoretical Economics Letters 1 (2011) 38–40. 

[12] E. Ahmed, M.F. Elettreby, A.S. Hegazi, ”On Puu’s incomplete information formulation 

for the standard and multi-team bertrand game”, Chaos, Soliton Fractals 30 (2006) 1180–

1184. 

[13] J.X. Zhang, Q.L. Da, Y.H. Wang, ”The dynamics of Bertrand model with bounded 

rationality”, Chaos, Solitons Fractals 39 (2009), pp. 2048–2055. 

[14] C.H. Tremblay, and V.J. Tremblay, “The Cournot-Bertrand Model and the Degree of 

Product Differentiation,” Eco-nomics Letters, Vol. 111, No. 3, 2011, pp. 233-235.             

[15] E. Ahmed, A.A. Elsadany, T. Puu, ”On Bertrand duopoly game with differentiated goods”, 

Applied Mathematics and Computation 251 (2015) 169–179 

[16] Q.G. Yi, X.J. Zeng, ”Complex dynamics and chaos control of duopoly Bertrand model in 

Chinese air-conditioning market”, Chaos, Solitons & Fractals 76 (2015) 231–237 

[17] H. Sonneschein, ”The Dual of Duopoly Is Complementary Monopoly: or. Two of 

Cournot's Theories Are One”, Journal of Political Economy, Vol. 76 (1968), pp. 316-318. 

[18] A. Imperato, A. Andrei, G. Oprescu, M. Roman, Reglarea Cibernetica in Sistemul Pietei 

Bunurilor si Serviciilor. Editura ASE, 2004 

[19] A. Dixit, ”Comparative statics for oligopoly” International Economic Review, Vol. 27 

(1986), pp. 107–122 

[20] M. Machado, ”Economia Industrial”, Cap 3.4 - Competencia en precios Modelo de 

Bertrand. Internet: https://www.academia.edu/16477977/1_1.Monopolio_modelo_basico 

[Jan. 20, 2019].    
 

 

 

 

 

 



Proceedings of the IE 2019 International Conference 

www.conferenceie.ase.ro 

 

 

 

 
479 

 

  

   Appendix A 
 

{

𝜕𝜋1

𝜕𝑝1
= m− 2n𝑝1 + 𝑙𝑝2 + nc = 0

𝜕𝜋2

𝜕𝑝2
= m− 2n𝑝2 + 𝑙𝑝1 + nc = 0

     {
     𝑝1 =

m+𝑙𝑝2+nc

2𝑛
=
𝑎−𝑎𝑑+𝑑𝑝2+𝑐

2
        

   𝑝1 =
2𝑛𝑝2−𝑚−nc

𝑙
=
2𝑝2−𝑎−𝑐+𝑎𝑑

 𝑑
    

 

where    𝑚 =
a(1−𝑑)

1−𝑑2
 , 𝑛 =

1

1−𝑑2
, l =

𝑑

1−𝑑2
 . By substitution: 

 
𝑑

1 − 𝑑2
𝑎 − 𝑎𝑑 + 𝑑𝑝2 + 𝑐

2
= −

𝑎 − 𝑎𝑑

1 − 𝑑2
+
2𝑝2
1 − 𝑑2

−
𝑐

1 − 𝑑2
  →  𝑎𝑑 − 𝑎𝑑2 + 𝑑2𝑝2 + 𝑐𝑑 = 

 

= −2𝑎 + 2𝑎𝑑 + 4𝑝2 − 2𝑐  → 𝑝2(4 − 𝑑
2) = −𝑎𝑑(1 + 𝑑) + 2𝑎 + 2𝑐 + 𝑐𝑑. 

 

  Therefore  𝑝2
∗ =

−𝑎𝑑(1+𝑑)+2𝑎+2𝑐+𝑐𝑑

4−𝑑2
 = 
𝑎(1−𝑑)+𝑐

2−𝑑
  and similarly   𝑝1

∗ =
𝑎(1−𝑑)+𝑐

2−𝑑
= 𝑝2

∗ 

 

        Equilibrium prices are identical. Identifying the appropriate quantities involve: 

 

𝑞1
∗ = m− n𝑝1

∗ + l𝑝2
∗ =

a(1−𝑑)

1−𝑑2
+
d−1

1−𝑑2
−𝑎𝑑(1+𝑑)+2𝑎+2𝑐+𝑐𝑑

4−𝑑2
=
4𝑎−4𝑎𝑑−𝑎𝑑2−𝑎𝑑3+𝑎𝑑

(1−𝑑2)(4−𝑑2)
+

𝑎𝑑2−2𝑎−2𝑐−𝑐𝑑−𝑎𝑑2−𝑎𝑑3+2𝑎𝑑+2𝑐𝑑+𝑐𝑑2

(1−𝑑2)(4−𝑑2)
=
(𝑎−𝑐)(2−𝑑−𝑑2)

(1−𝑑2)(4−𝑑2)
=

𝑎−𝑐

(1+𝑑)(2−𝑑)
= 𝑞2

∗  

 

      The equilibrium quantities are the same for the two players. At this point, we can also calculate the 

profit obtained in the Nash equilibrium scenario:  𝜋1
∗ = 𝜋2

∗ = (𝑝∗ − 𝑐)𝑞∗ =
−𝑎𝑑2−𝑎𝑑+2𝑎+2𝑐+𝑐𝑑−4𝑐+𝑐𝑑2

4−𝑑2
∗

(𝑎−𝑐)

(1+𝑑)(2−𝑑)
=
(𝑎−𝑐)(2−𝑑−𝑑2)

4−𝑑2
∗

(𝑎−𝑐)

(1+𝑑)(2−𝑑)
=
(𝑎−𝑐)2(1−𝑑)

(2−𝑑)2(1+𝑑)
 

 

           Appendix B 

                                       Table 1. Simulation of price, quantity and profit evolution 

d p q ∏ 

0 0.5*a+0.5*c 0.5*(a-c) 0.25*(a-c)2 

0.05 0.487179*a+0.512821c 0.4884*(a-c) 0.237939*(a-c)2 

0.1 0.473684*a+0.526316*c 0.478469*(a-c) 0.226643*(a-c)2 

0.15 0.459459*a+0.540541*c 0.470035*(a-c) 0.215962*(a-c)2 

0.2 0.444444*a+0.555556*c 0.462963*(a-c) 0.205761*(a-c)2 

0.25 0.428571*a+0.571429*c 0.457143*(a-c) 0.195918*(a-c)2 

0.3 0.411765*a+0.588235*c 0.452489*(a-c) 0.186319*(a-c)2 

0.35 0.393939*a+0.606061*c 0.448934*(a-c) 0.176853*(a-c)2 

0.4 0.375*a+0.625*c 0.446429*(a-c) 0.167411*(a-c)2 

0.45 0.354839*a+0.645161*c 0.444939*(a-c) 0.157882*(a-c)2 

0.5 0.333333*a+0.666667*c 0.444444*(a-c) 0.148148*(a-c)2 

0.55 0.310345*a+0.689655*c 0.444939*(a-c) 0.138084*(a-c)2 

0.6 0.285714*a+0.714286*c 0.446429*(a-c) 0.127551*(a-c)2 

0.65 0.259259*a+0.740741*c 0.448934*(a-c) 0.11639*(a-c)2 

0.7 0.230769*a+0.769231*c 0.452489*(a-c) 0.10442*(a-c)2 

0.75 0.2*a+0.8*c 0.457143*(a-c) 0.091429*(a-c)2 

0.8 0.166667*a+0.833333*c 0.462963*(a-c) 0.07716*(a-c)2 

0.85 0.130435*a+0.869565*c 0.470035*(a-c) 0.061309*(a-c)2 
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0.9 0.090909*a+0.909091*c 0.478469*(a-c) 0.043497*(a-c)2 

0.95 0.047619*a+0.952381*c 0.4884*(a-c) 0.023257*(a-c)2 

1 c 0.5*(a-c) 0 

 

Appendix C 

𝑞∗ =
𝑎 − 𝑐

(1 + 𝑑)(2 − 𝑑)
 → 𝑞∗′ =

Δ𝑞∗

Δ𝑑
= −(𝑎 − 𝑐)

[(1 + 𝑑)(2 − 𝑑)]′

[(1 + 𝑑)(2 − 𝑑)]2
     

= −(𝑎 − 𝑐)
[2 − 𝑑 + (1 + 𝑑)(−1)]

(1 + 𝑑)2(2 − 𝑑)2
=
(𝑎 − 𝑐)(1 − 2𝑑)

(1 + 𝑑)2(2 − 𝑑)2
 

         With the exception of the 1-2d term, all other brackets are positive, so the sign of the derivative is 

given by its sign. As ½ is the critical value, we get: 

{
1 − 2𝑑 < 0 (∀)𝑑 ∈ [0;

1

2
)

1 − 2𝑑 > 0 (∀)𝑑 ∈ (
1

2
; 1]

 → {
𝑞∗′ < 0 (∀)𝑑 ∈ [0;

1

2
)

𝑞∗′ > 0 (∀)𝑑 ∈ (
1

2
; 1]
→ {

𝑞∗ ↓  (∀)𝑑 ∈ [0;
1

2
)

𝑞∗ ↑  (∀)𝑑 ∈ (
1

2
; 1]

 

   

Appendix D 

𝜋∗ =
(𝑎 − 𝑐)2(1 − 𝑑)

(2 − 𝑑)2(1 + 𝑑)
→ 𝜋∗′ =

Δ𝜋∗

Δ𝑑
= (𝑎 − 𝑐)2

−(2 − 𝑑)2(1 + 𝑑) − (1 − 𝑑)[(2 − 𝑑)2(1 + 𝑑)]′

[(2 − 𝑑)2(1 + 𝑑)]2
= 

= (𝑎 − 𝑐)2
−(4 − 4𝑑 + 𝑑2)(1 + 𝑑) − (1 − 𝑑)[−2(2 − 𝑑)(1 + 𝑑) + (2 − 𝑑)2]

[(2 − 𝑑)2(1 + 𝑑)]2
 

        = (𝑎 − 𝑐)2
−4− 4𝑑 + 4𝑑 + 4𝑑2 − 𝑑2 − 𝑑3 − (1 − 𝑑)(2𝑑2 − 2𝑑 − 4 + 4 − 4𝑑 + 𝑑2)

[(2 − 𝑑)2(1 + 𝑑)]2
 

        = (𝑎 − 𝑐)2
−𝑑3 + 3𝑑2 − 4 − (1 − 𝑑)(3𝑑2 − 6𝑑)

[(2 − 𝑑)2(1 + 𝑑)]2
 

         = (𝑎 − 𝑐)2
−𝑑3 + 3𝑑2 − 4 − 3𝑑2 + 6𝑑 + 3𝑑3 − 6𝑑2

[(2 − 𝑑)2(1 + 𝑑)]2
= (𝑎 − 𝑐)2

2𝑑3 − 6𝑑2 + 6𝑑 − 4

(2 − 𝑑)4(1 + 𝑑)2
  

          = (𝑎 − 𝑐)2
2(𝑑3 − 3𝑑2 + 3𝑑 − 2)

(2 − 𝑑)4(1 + 𝑑)2
= (𝑎 − 𝑐)2

2(𝑑 − 2)(𝑑2 − 𝑑 + 1)

(2 − 𝑑)4(1 + 𝑑)2
 

           = −(𝑎 − 𝑐)2
2(𝑑2 − 𝑑 + 1)

(2 − 𝑑)3(1 + 𝑑)2
< 0 →  𝜋∗

′
< 0 (∀)𝑑 ∈ [0; 1)  →   𝜋∗ ↓  (∀)𝑑 ∈ [0; 1) 

  


